Effect of Negative Ions on Electrical Breakdown in a Nonuniform Air Gap Between a Wire and a Plane

نویسندگان

  • K. Ramakrishna
  • Ira M. Cohen
  • Portonovo S. Ayyaswamy
چکیده

Electrical breakdown of an axisymmetric, atmospheric pressure air gap between a wire and a plane has been investigated for a gap length of 0.5 mm. 0and 02have been identified as the negative ions affecting the discharge development in air, besides electrons and positive ions, and have been included in the electrical breakdown model. Five coupled two-dimensional transient partial differential equations describing the discharge evolution in the air gap have been solved using a finite difference algorithm developed earlier. Temporal development of the charged particle number densities, electrostatic potential, electric field, and current at both the electrodes is presented when the wire is negatively biased at 2500 V. The impact of negative ions on gap breakdown has been assessed by comparing the results of analyses with and without negative ions. It is concluded that the negative ions have negligible effect during the early stages of the discharge development. However, as the discharge evolves, the negative ions cause a net loss of electrons from the discharge. The effect is most pronounced away from the discharge axis, where peaks in the electron density occur as breakdown proceeds. Radial spread of discharge and current growth rate are relatively unaffected by the presence of negative ions, but the magnitude of total current at the electrodes has been found to decrease by a decade when the negative ions are present. Disciplines Engineering | Mechanical Engineering Comments Suggested Citation: Ramakrishna, K., Ira M. Cohen and Portonovo S. Ayyaswamy. (1994). Effect of negative ions on electrical breakdown in a nonuniform air gap between a wire and a plane. Physics of Plasmas. Vol. 1(5). Copyright (1994) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas and may be found at http://link.aip.org/link/PHPAEN/ v1/i5/p1349/s1 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/178 Effect of negative ions on electrical breakdown in a nonuniform air gap between a wire and a plane K. Ramakrishna Materials Science. Endicott Electronic Packaging. Microelectronics Division. IBM Corporation. Endicott. New York 13760-8000 I. M. Cohen and P. S. Ayyaswamy Department of Mechanical Engineering and Applied Mechanics. University of Pennsylvania. Philadelphia. Pennsylvania 19104-6315 (Received 20 October 1993; accepted 25 January 1994) Electrical breakdown of an axisymmetric, atmospheric pressure air gap between a wire and a plane has been investigated for a gap length of 0.5 mm. 0and 02" have been identified as the negative ions affecting the discharge development in air, besides electrons and positive ions, and have been included in the electrical breakdown model. Five coupled two-dimensional transient partial differential equations describing the discharge evolution in the air gap have been solved using a finite difference algorithm developed earlier. Temporal development of the charged particle number densities, electrostatic potential, electric field, and current at both the electrodes is presented when the wire is negatively biased at 2500 V. The impact of negative ions on gap breakdown has been assessed by comparing the results of analyses with and without negative ions. It is concluded that the negative ions have negligible effect during the early stages of the discharge development. However, as the discharge evolves, the negative ions cause a net loss of electrons from the discharge. The effect is most pronounced away from the discharge axis, where peaks in the electron density occur as breakdown proceeds. Radial spread of discharge and current growth rate are relatively unaffected by the presence of negative ions, but the magnitUde of total current at the electrodes has been found to decrease by a decade when the negative ions are present.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimenslonal Analysis of Electrical Breakdown in a Nonuniform Gap Between a Wire and a Plane

Electrical breakdown of a gap between a wire (modeled as a hyperboloid) and a plane has been investigated numerically by solving the two-dimensional form of the diffusion flux equations for the charged particle number densities and Poisson's equation for the self-consistent electric field. Electron impact ionization, thermal ionization, and three-body recombination have been considered as the c...

متن کامل

A Capacitive Fed Microstrip Patch Antenna with Air Gap for Wideband Applications (RESEARCH NOTE)

In this paper a microstrip antenna on a suspended substrate with capacitive feed is presented. capacitive feed is created by a slot within the rectangular patch around the feed point. The proposed antenna exhibits a much higher impedance bandwidth of about 47% (S11 < −10 dB). Effects of key design parameters such as the air gap between the substrate and the ground plane, the gap width between r...

متن کامل

Breakdown of a Wire-to-Plane Discharge: Transient Effects

A wire-to-plane discharge during the early phases of breakdown has been studied. The discharge has been modeled in a prolate spheroidal coordinate system with the wire shape taken as a hyperboloid of revolution. Four simultaneous coupled, time-dependent, nonlinear partial differential equations describe the electrical discharge. These are the conservation equations for ion and electron densitie...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing Process for Wire-Electrical Discharge Machining

Wire electrical discharge machining (WEDM) is a method to cut conductive materials with a thin electrode that follows a programmed path. The electrode is a thin wire. Typical diameters range from .004" - .012" (.10mm - .30mm) although smaller and larger diameters are available. WEDM is a thermal machining process capable of accurately machining parts with varying hardness or complex shapes. WED...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing Process for Wire-Electrical Discharge Machining

Wire electrical discharge machining (WEDM) is a method to cut conductive materials with a thin electrode that follows a programmed path. The electrode is a thin wire. Typical diameters range from .004" - .012" (.10mm - .30mm) although smaller and larger diameters are available. WEDM is a thermal machining process capable of accurately machining parts with varying hardness or complex shapes. WED...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015